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PSYCHOMETRIC PRINCIPLES IN STUDENT ASSESSMENT'

Robert J. Mislevy
CRESST/University of Maryland

Mark R. Wilson
University of California at Berkeley

Kadriye Ercikan
University of British Columbia

Naomi Chudowsky
National Research Council

Abstract

In educational assessment, we observe what students say, do, or in a few particular
circumstances make, and attempt to infer what they know, can do, or have
accomplished more generally. Some links in the chain of inference depend on statistical
models and probability-based reasoning, and it is with these links that terms such as
validity, reliability, and comparability are typically associatedpsychometric
principles, as it were. Familiar formulas and procedures from test theory provide
working definitions and practical tools for addressing these more broadly applicable
qualities of the chains of argument from observations to inferences about students, as
they apply to familiar methods of gathering and using assessment data. This report
has four objectives: It offers a framework for the evidentiary arguments that ground

assessments, examines where psychometric principles fit in this framework, shows how

familiar formulas apply these ideas to familiar forms of assessment, and looks ahead
to extending the same principles to new kinds of assessments.

I We are grateful for the suggestions of section editors George Madaus and Marguerite Clarke on an
earlier version. The first author received support under the Educational Research and Development
Centers Program, PR/Award Number R305B60002, as administered by the Office of Educational
Research and Improvement, U.S. Department of Education. The second author received support from
the National Science Foundation under grant No. ESI-9910154.
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[V]alidity, reliability, comparability, and fairness are not just measurement issues, but

social values that have meaning and force outside of measurement wherever
evaluative judgments and decisions are made.

Messick, 1994, p. 2.

Overview

What are psychometric principles? Why are they important? How do we

attain them? We address these questions from the perspective of assessment as

evidentiary reasoning; that is, how we draw inferences about what students
know, can do, or understand, as more broadly construed from the handful of
particular things they say, do, or make in an assessment setting. Messick (1989),

Kane (1992), and Cronbach and Meehl (1955) show the deep insights that can be
gained from examining validity from such a perspective. We aim to extend the
approach to additional psychometric principles and bring out connections with

assessment design and probability-based reasoning.

Seen through this lens, validity, reliability, comparability, and fairness (as in

the quote from Messick, above) are properties of an argumentnot formulas,

models, or statistics per se. We'll do two things, then, before we even introduce

statistical models. We'll look more closely at the nature of evidentiary
arguments in assessment, paying special attention to the role of standardization.
And we'll describe a framework that structures the evidentiary argument in a
given assessment, based on an evidence-centered design framework (Mislevy,
Steinberg, & Almond, in press). In this way we may come to appreciate
psychometric principles without tripping over psychometric details.

Of course in practice we do use models, formulas, and statistics to examine

the degree to which an assessment argument possesses the salutary

characteristics of validity, reliability, comparability, and fairness. So this report
does have to consider how these principles are addressed when one uses
particular measurement models to draw particular inferences, with particular
data, for particular purposes. To this end, we describe the role of probability-based

reasoning in the evidentiary argument, using classical test theory to illustrate

ideas. We then survey some widely used psychometric models, such as item

response theory and generalizability analysis, focusing on how each is used to
address psychometric principles in different circumstances. We can't provide a
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guidebook for using all this machinery, but we will point out some useful

references along the way for the reader who needs to do so.

This is a long road, and it may seem to wander at times. We'll start by
looking at examples from an actual assessment, so the reader will have an idea of

where we want to go, for thinking about assessment in general, and
psychometric principles in particular.

An Introductory Example

The assessment design framework provides a way of thinking about
psychometrics that relates what we observe to what we infer. The models of the
evidence-centered design framework are illustrated in Figure 1. The student
model at the far left concerns what we want to say about what a student knows or

can doaspects of their knowledge or skill. Following a tradition in
psychometrics, we label this "0" (theta). This label may stand for something
rather simple, like a single category of knowledge, such as vocabulary usage, or
something much more complex, like a set of variables that concern which
strategies a student can bring to bear on mixed-number subtraction problems and
under what conditions a student uses which ones. The task model at the far right

concerns the situations we can set up in the world, in which we will observe the
student say or do something that gives us clues about the knowledge or skill

we've built into the student model. Between the student and task model are the
scoring model and the measurement model, through which we reason from
what we observe in performances to what we infer about a student.

Let's illustrate these models with a recent examplean assessment system
built for a middle school science curriculum, "Issues, Evidence and You" (IEY)

(SEPUP, 1995). Figure 2 describes variables in the student model upon which
both the IEY curriculum and its assessment system, called the BEAR Assessment

System (Wilson & Sloane, 2000), are built. The student model consists of four

variables, at least one of which is the target of every instructional activity and

assessment in the curriculum. The four variables are seen as four dimensions on
which students will make progress during the curriculum. The dimensions are
correlated (positively, we expect) because they all relate to "science," but are quite
distinct educationally. The psychometric tradition would use a diagram like

Figure 3 to illustrate this situation. Each of the variables is represented as a
circlethis is intended to indicate that they are unobservable or latent variables.
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They are connected by curving linesthis is intended to indicate that they are
not necessarily causally related to one another (at least as far as we are modeling
that relationship), but they are associated. (Usually we use a correlation

coefficient to express that association.)

Student Model Evidence Model(s)

Measurement
Model

Scoring
Model

XI

x2

I

Figure 1. General form of the assessment design models.

Task Model(s)

104,

I . xxxxxxxx 2. xxxxxx xx

3. xxxxxxxx 4. xxxxxx xx
5. xxxxxxxx 6. xxxxxx xx
7. xxxxxxxx 8. xxxxxx xx

Understanding Concepts (U)Understanding scientific concepts (such
as properties and interactions of materials, energy, or thresholds) in
order to apply the relevant scientific concepts to the solution of
problems. This variable is the IEY version of the traditional "science
content," although this content is not just "factoids."
Designing and Conducting Investigations (I)Designing a scientific
experiment; carrying through a complete scientific investigation;
performing laboratory procedures to collect data; recording and
organizing data; and analyzing and interpreting results of an
experiment. This variable is the IEY version of the traditional "science
process."
Evidence and Tradeoffs (E)Identifying objective scientific evidence,
as well as evaluating the advantages and disadvantages of different
possible solutions to a problem based on the available evidence.
Communicating Scientific Information (C)Organizing and
presenting results in a way that is free of technical errors and effectively
communicates with the chosen audience.

Figure 2. The variables in the student model for the BEAR "Issues, Evidence, and You"
example.
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Figure 3. Graphical representation of the BEAR student model.

The student model represents what we wish to measure in students. These
are constructsvariables that are inherently unobservable, but which we
propose as a useful way to organize our thinking about students. They describe
aspects of their skill or knowledge for the purposes of, say, comparing programs,
evaluating progress, or planning instruction. We use them to accumulate
evidence from what we can actually observe students saying and doing.

Now look at the right-hand side of Figure 1. This is the task model. This is
how we describe the situations we construct in which students will actually
perform. Particular situations are generically called "items" or "tasks."

In the case of IEY, the items are embedded in the instructional curriculum,
so much so that the students would not necessarily know that they were being
assessed unless the teacher told them. An example task is shown in Figure 4. It
was designed to prompt student responses that relate to the "Evidence and
Tradeoffs" variable defined in Figure 2. Note that this variable is a somewhat
unusual one in a science curriculumthe IEY developers think of it as

representing the sorts of cognitive skills one would need to evaluate the
importance of, say, an environmental impact statementsomething that a
citizen might need to do that is directly related to science's role in the world. A n

example of a student response to this task is shown in Figure 5.

How do we extract from this particular response some evidence about the
unobservable student-model variable we have labeled Evidence and Tradeoffs?
What we need is in the second model from the right in Figure 1the scoring
model. This is a procedure that allows one to focus on aspects of the student
response and assign them to categories, in this case, ordered categories that
suggest higher levels of proficiency along the underlying latent variable. A
scoring model can take the form of what is called a rubric in the jargon of
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assessment, and in IEY does take that form (although it is called a scoring guide).

The rubric for the Evidence and Tradeoffs variable is shown in Figure 6. It
enables a teacher or a student to recognize and evaluate two distinct aspects of

responses to the questions related to the Evidence and Tradeoffs variable. In
addition to the rubric, scorers have exemplars of student work available to them,
complete with adjudicated scores and explanation of the scores. They also have a
method (called assessment moderation) for training people to use the rubric. All
these elements together constitute the scoring model. So, what we put in to the
scoring model is a student's performance; what we get out is one or more scores

for each task, and thus a set of scores for a set of tasks.

2. You are a public health official who works in the Water Department. Your
supervisor has asked -you to respond to the public's concern about water
chlorination at the next City Council meeting. Prepare a written response
explaining the issues raised in the newspaper articles. Be sure to discuss the
advantages and disadvantages of chlorinating drinking water in your
response, and then explain your recommendation about whether the water
should be chlorinated.

Figure 4. An example of a task directive from the BEAR assessment.

"As an edjucated employee of the Grizzelyville water company, I am well
aware of the controversy surrounding the topic of the chlorination of our
drinking water. I have read the two articals regarding the pro's and cons of
chlorinated water. I have made an informed decision based on the evidence
presented the articals entitled "The Peru Story" and "700 Extra People May
bet Cancer in the US." It is my recommendation that our towns water be
chlorin treated. The risks of infecting our citizens with a bacterial diseease
such as cholera would be inevitable if we drink nontreated water. Our town
should learn from the country of Peru. The artical "The Peru Story" reads
thousands of inocent people die of cholera epidemic. In just months 3,500
people were killed and more infected with the diease. On the other hand i f

we do in fact chlorine treat our drinking water a risk is posed. An increase in
bladder and rectal cancer is directly related to drinking chlorinated water.
Specifically 700 more people in the US may get cancer. However, the
cholera risk far outweighs the cancer risk for 2 very important reasons. Many
more people will be effected by cholera where as the chance of one of our
citizens getting cancer due to the water would be very minimal. Also cholera
is a spreading diease where as cancer is not. If our town was infected with
cholera we could pass it an to millions of others. And so, after careful
consideration it is my opion that the citizens of Grizzelyville drink chlorine
treated water."

Figure 5. An example of a student response from the BEAR assessment.
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Score

Using Evidence:

Response uses objective reason(s) based
on relevant evidence to support choice.

Using Evidence to Make
Tradeoffs:

Response recognizes multiple perspectives
of issue and explains each perspective
using objective reasons, supported by

evidence, in order to make choice.

4

Response accomplishes Level 3 AND
goes beyond in some significant way,
such as questioning or justifying the
source, validity, and/or quantity of
evidence.

Response accomplishes Level 3 AND goes
beyond in some significant way, such as
suggesting additional evidence beyond the
activity that would further influence
choices in specific ways, OR
questioning the source, validity, and/or
quantity of evidence & explaining how it
influences choice.

3
Response provides major objective
reasons AND supports each with relevant
& accurate evidence.

Response discusses at leas t two
perspectives of issue AND provides
objective reasons, supported by relevant &
accurate evidence, for each perspective.

2

Response provides some_objective reasons
AND some supporting evidence, BUT at
least one reason is missing and/or part of
the evidence is incomplete.

Response states at least one perspective of
issue AND provides some objective
reasons using some relevant evidence BUT
reasons are incomplete and/or part of the
evidence is missing; OR only one complete
& accurate perspective has been provided.

i.

Response provides only subjective
reasons (opinions) for choice and/or uses
inaccurate or irrelevant evidence from the
activity.

Response states at least one perspective of
issue BUT only provides subjective
reasons and/or uses inaccurate or irrelevant
evidence.

0
No response; illegible response; response
offers no reasons AND no evidence to
support choice made.

No response; illegible response; response
lacks reasons AND offers no evidence to
support decision made.

X Student had no opportunity to respond.

Figure 6. The scoring model for evaluating two observable variables from task
responses in the BEAR assessment.

What now remains? We need to connect the student model on the left-

hand side of Figure 1 with the scores that have come out of the scoring
modelin what way, and with what value, should these nuggets of evidence

affect our beliefs about the student's knowledge? For this we have another
model, which we will call the measurement model. This single component is
commonly known as a psychometric model. Now this is somewhat of a paradox,

as we have just explained that the framework for psychometrics actually
involves more than just this one model. The measurement model has indeed

traditionally been the focus of psychometrics, but it is not sufficient to

BEST COPY AVAILABL.
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understand psychometric principles. The complete set of elements, the full
evidentiary argument, must be addressed.

Figure 7 shows the relationships in the measurement model for the sample
IEY task. Here the student model (first shown in Figure 3) has been augmented
with a set of boxes. The boxes are intended to indicate that they are observable
rather than latent, and these are in fact the scores from the scoring model for this
task. They are connected to the Evidence and Tradeoffs student-model variable
with straight lines, meant to indicate a causal (though probabilistic) relationship
between the variable and the observed scores, and the causality is posited to run
from the student-model variables to the scores. Said another way, what the
student knows and can do, as represented by the variables of the student model,
determines how likely it is that the students will make right answers rather than
wrong ones, carry out sound inquiry rather than founder, and so on, in each
particular task they encounter. In this example, both observable variables are
posited to depend on the same aspect of knowledge, namely Evidence and
Tradeoffs. A different task could have more or fewer observables, and each
would depend on one or more student-model variables, all in accordance with
what knowledge and skill the task is designed to evoke.

Using
Evidence

Using
Evidence to

Make
Tradeoffs

Figure 7. Graphical representation of the measurement model for the
BEAR sample task linked to the BEAR student model.
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It is important for us to note that the student model in this example (indeed

in most psychometric applications) is not proposed as a realistic explanation of

the thinking that takes place when a student works through a problem. It is a

piece of machinery we use to accumulate information across tasks, in a language

and at a level of detail we think suits the purpose of the assessment (for a more

complete perspective on this, see Pirolli & Wilson, 1998). Without question, it is

selective and simplified. But it ought to be consistent with what we know about

how students acquire and use knowledge, and it ought to be consistent with what

we see students say and do. This is where psychometric principles come in.

What do psychometric principles mean in IEY? Validity concerns whether

the tasks actually do give sound evidence about the knowledge and skills the
student-model variables are supposed to measure, namely, the five IEY progress

variables. Or are there plausible alternative explanations for good or poor
performance? Reliability concerns how much we learn about the students, in
terms of these variables, from the performances we observe. Comparability

concerns whether what we say about students, based on estimates of their
student-model variables, has a consistent meaning even if students have taken
different tasks, or been assessed at different times or under different conditions.

Fairness asks whether we have been responsible in checking important facts

about students and examining characteristics of task model variables that would
invalidate the inferences that test scores would ordinarily suggest.

Psychometric Principles and Evidentiary Arguments

We have seen through a quick example how assessment can be viewed as

evidentiary arguments, and that psychometric principles can be viewed as
desirable properties of those arguments. Let's go back to the beginning and
develop this line of reasoning more carefully.

Educational Assessment as Evidentiary Argument?

Inference is reasoning from what we know and what we observe to
explanations, conclusions, or predictions. Rarely do we have the luxury of
reasoning with certainty; the information we work with is typically incomplete,

We are indebted to Prof. David Schum for our understanding of evidentiary reasoning, such as it is.
This first part of this section draws on Schum (1987, 1994) and Kadane and Schum (1996).



inconclusive or amenable to more than one explanation. The very first question

in an evidentiary problem is, "evidence about what?" Data become evidence in

some analytic problems only when we have established their relevance to some
conjecture we are considering. And this task of establishing the relevance of data
and its weight as evidence depends on the chain of reasoning we construct from

the evidence to those conjectures.

Both conjectures and an understanding of what constitutes evidence about

them arise from the concepts and relationships of the field under consideration.
We'll use the term substantive to refer to these content- or theory-based aspects

of reasoning within a domain, in contrast to structural aspects such as logical

structures and statistical models. In medicine, for example, physicians frame
diagnostic hypotheses in terms of what they know about the nature of diseases
and the signs and symptoms that result from various disease states. The data are

patients' symptoms and physical test results, from which physicians reason back

to likely disease states. In history, hypotheses concern what happened and why.
Letters, documents, and artifacts are the data the historian must fit into a larger
picture of what is known and what is supposed.

Philosopher Stephen Toulmin (1958) provided terminology for talking
about how we use substantive theories and accumulated experience (say, about
algebra and how kids learn it) to reason from particular data (Joe's solutions) to a

particular claim (what Joe understands about algebra). Figure 8 outlines the
structure of a simple argument. The claim is a proposition we wish to support
with data. The arrow represents inference, which is justified by a warrant, or a

generalization that justifies the inference from the particular data to the
particular claim. Theory and experience provide backing for the warrant. In any
particular case, we reason back through the warrant, so we may need to qualify

our conclusions because there are alternative explanations for the data.

In practice, of course, an argument and its constituent claims, data,

warrants, backing, and alternative explanations will be more complex than
Figure 8. An argument usually consists of many propositions and data elements,
involves chains of reasoning, and often contains dependencies among claims

and various pieces of data. This is the case in assessment.
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Warrant
Students who know how
to use writing techniques will
do so in an assignment that
calls for them.

on
account

of

Backing:
The past three terms,
students' understandings of
the use of techniques in in-
depth interviews have
corresponded with their
performances in their
essays.

Claim:
Sue can use specifics
to illustrate a description
of a fictional character.

since

1 SO

unless

Data:
Sue's essay uses
three incidents to
illustrate Hamlet's
indecisiveness.

Alternative Hypothesis:

The student has not
actually produced the work.

supports

Rebuttal data:
Sue's essay is very
similar to the character
description in the Cliff Notes
guide to Hamlet.

Figure 8. A Toulmin Diagram for a simple assessment situation.

In educational assessments, the data are the particular things students say,

do, or create in a handful of particular situationswritten essays, correct and

incorrect marks on answer sheets, presentations of projects, or explanations of

their problem solutions. Usually our interest lies not so much in these

particulars, but in the clues they hold about what students understand more
generally. We can only connect the two through a chain of inferences. Some
links depend on our beliefs about the nature of knowledge and learning. What is

important for students to know, and how do they display that knowledge? Other

links depend on things we know about students from other sources. Do they
have enough experience with a computer to use it as a tool to solve an
interactive physics problem, or will it be so unfamiliar as to hinder their work?

Some links use probabilistic models to communicate uncertainty, because we can

administer only a few tasks or because we use evaluations from raters who don't
always agree. Details differ, but a chain of reasoning must underlie an assessment

of any kind, from classroom quizzes and standardized achievement tests, to
coached practice systems and computerized tutoring programs, to the informal
conversations students have with teachers as they work through experiments.

13



The Case for Standardization

Evidence rarely comes without a price. An obvious factor in the total cost of

an evidentiary argument is the expense of gathering the data, but figuring out

what data to gather and how to make sense of it can also cost dearly. In legal

cases, these latter tasks are usually carried out after the fact. Because each case is

unique, at least parts of the argument must be uniquely fashioned. Marshalling

evidence and constructing arguments in the O.J. Simpson case took more than a

year and cost millions of dollars, to prosecution and defense alike.

If we foresee that the same kinds of data will be required for similar
purposes on many occasions, we can achieve efficiencies by developing standard

procedures both for gathering the data and reasoning from it (Schum, 1994, p.

137). A Well-designed protocol for gathering data addresses important issues in its

interpretation, such as making sure the right kinds and right amounts of data are

obtained, and heading off likely or pernicious alternative explanations.

Following standard procedures for gathering biological materials from crime

scenes, for example, helps investigators avoid contaminating samples and allows

them to keep track of everything that happens to them from collection to testing.

Further, merely confirming that they've followed the protocols immediately
communicates to others that these important issues have been recognized and

dealt with responsibly.

A major way that large-scale assessment is made practicable in education is

by thinking these issues through up front--laying out the argument for what
data to gather and why, from each of the many students that will be assessed. The

details of the data will vary from one student to another, and so will the claims.

But the same kind of data will be gathered for each student; the same kind of

claim will be made, and, most importantly, the same argument structure will be

used in each instance. This strategy offers great efficiencies, but it admits the

possibility of cases that do not accord with the common argument. Therefore,

establishing the credentials of the argument in an assessment that is used with

many students entails the two distinct responsibilities listed below. We shall see

that investigating them and characterizing the degree to which they hold can be

described in terms of psychometric principles.

Establishing the credentials of the evidence in the common argument.
This is where efficiency is gained. To the extent that the same argument

14
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structure holds for all the students it will be used with, the specialization
to any particular student inherits the backing that has been marshaled
for the general form. We will discuss below how the common argument
is framed. Both rational analyses and large-scale statistical analyses can
be used to test the argument's fidelity at this macro level. These tasks can
be arduous, and they can never really be considered complete, because
we could always refine the argument or test additional alternative
hypotheses (Messick, 1989). The point is, though, that this effort does not
increase in proportion to the number of examinees who are assessed.

Detecting individuals for whom the common argument does not hold.
Inevitably, the theories, the generalizations, the empirical grounding for
the common argument will not hold for some students. The usual data
arrive, but the usual inference does not followeven if the common
argument does support validity and reliability in the main. These
instances call for additional data or different arguments, often on a more
expensive case-by-case basis. An assessment system that is both efficient
and conscientious will minimize the frequency with which these
situations occur but routinely and inexpensively draw attention to them
when they do.

It is worth emphasizing that the standardization we are discussing here

concerns the structure of the argument, not necessarily the form of the data.
Some may think that this form of standardization is only possible with so-called

objective item forms such as multiple-choice items. Few large-scale assessments

are more open-ended than the Advanced Placement Studio Art portfolio

assessment (Myford & Mislevy, 1995); students have an almost unfettered choice
of media, themes, and styles. But the AP program provides a great deal of
information about the qualities students need to display in their work, what they

need to assemble as work products, and how raters will evaluate them. This
structure allows for a common argument, heads off alternative explanations
about unclear evaluation standards in the hundreds of AP Studio Art classrooms

across the country, and, most happily, helps the students come to understand the

nature of good work in the field (Wolf, Bixby, Glenn, & Gardner, 1991).

Psychometric Principles as Properties of Arguments

Seeing assessment as argument from limited evidence is a starting point for

understanding psychometric principles.

Validity. Validity is paramount among psychometric principles, for validity

speaks directly to the extent to which a claim about a student, based on
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assessment data from that student, is justified (Cronbach, 1989; Messick, 1989).
Establishing validity entails making the warrant explicit, examining the network
of beliefs and theories on which it relies, and testing its strength and credibility
through various sources of backing. It requires determining conditions that
weaken the warrant, exploring alternative explanations for good or poor
performance, and feeding them back into the system to reduce inferential errors.

In the introductory example, we saw that assessment is meant to get
evidence about students' status with respect to a construct, some particular
aspect(s) of knowledge, skill, or abilityin that case, the IEY variables. Cronbach
and Meehl (1955) said "construct validation is involved whenever a test is to be
interpreted as a measure of some attribute or quality is not operationally
defined"that is, when there is a claim about a person based on observations,
not merely a statement about those particular observations in and of themselves.
Earlier work on validity distinguished a number of varieties of validity, such as
content validity, predictive validity, convergent and divergent validity, and we
will say a bit more about these later. But the current view, as the Standards for
Educational and Psychological Testing (American Educational Research
Association, American Psychological Association, and National Council of
Measurement in Education, 1999) asserts, is that validity is a unitary concept.
Ostensibly, different kinds of validity are better viewed as merely different lines
of argument and different kinds of evidence for a single kind of validity. If you
insist on a label for it, it would have to be construct validity.

Embretson (1983) distinguishes between validity arguments that concern
why data gathered in a certain way ought to provide evidence about the targeted
skill knowledge, and those that investigate relationships of resulting scores with
other variables to support the case. These are, respectively, arguments about
"construct representation" and arguments from "nomothetic span." Writing i n
1983, Embretson noted that validation studies relied mainly on nomothetic
arguments, using scores from assessments in their final form or close to it. The
construction of those tests, however, was guided mainly by specifications for
item format and content, rather than by theoretical arguments or empirical
studies regarding construct representation. The "cognitive revolution" in the
latter third of the 20th century provided both scientific respectability and practical
tools for designing construct meaning into tests from the beginning (Embretson).
The value of both lines of argument is appreciated today, with validation
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procedures based on nomothetic span tending to be more mature and those
based on construct representation still evolving.

Reliability. Reliability concerns the adequacy of the data to support a claim,
presuming the appropriateness of the warrant and the satisfactory elimination of
alternative hypotheses. Even if the reasoning is sound, there may not be enough
information in the data to support the claim. Later we will see how reliability is
expressed quantitatively when probability-based measurement models are
employed. We can mention now, though, that the procedures by which data are
gathered can involve multiple steps or features that each affect the evidentiary
value of data. Depending on Jim's rating of Sue's essay rather than evaluating it
ourselves adds a step of reasoning to the chain, introducing the need to establish
an additional warrant, examine alternative explanations, and assess the value of
the resulting data.

How can we gauge the adequacy of evidence? Brennan (2000/in press)
writes that the idea of repeating the measurement process has played a central
role in characterizing an assessment's reliability since the work of Spearman
(1904)much as it does in physical sciences. If you weigh a stone 10 times and get
a slightly different answer each time, the variation among the measurements is a
good index of the uncertainty associated with that measurement procedure.
However, it is less straightforward to know just what repeating the
measurement procedure means if the procedure has several steps that could each
be done differently (different occasions, different task, different raters), or if some
of the steps can't be repeated at all (if a person learns something by working
through a task, a second attempt isn't measuring the same level of knowledge).
We will see that the history of reliability is one of figuring out how to
characterize the value of evidence in increasingly wider ranges of assessment
situations.

Comparability. Comparability concerns the common occurrence that the
specifics of data collection differ for different students, or for the same students at
different times. Differing conditions raise alternative hypotheses when we need
to compare students with one another or against common standards, or when
we want to track students' progress over time. Are there systematic differences in
the conclusions we would draw when we observe responses to Test Form A as
opposed to Test Form B, for example? Or from a computerized adaptive test
instead of the paper-and-pencil version? Or if we use a rating based on two
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judges, as opposed to the average of two, or the consensus of three? We must
then extend the warrant to deal with these variations, and we must include
them as alternative explanations of differences in students' scores.

Comparability overlaps with reliability, as both raise questions of how
evidence obtained through one application of a data-gathering procedure might

differ from evidence obtained through another application. The issue is

reliability when we consider the two measures interchangeablewhich is used is

a matter of indifference to the examinee and assessor alike. Although we expect
the results to differ somewhat, we don't know if one is more accurate than the
other, whether one is biased toward higher values, or if they will illuminate
different aspects of knowledge. The same evidentiary argument holds for both

measures, and the obtained differences are what constitute classical

measurement error. The issue is comparability when we expect systematic
differences of any of these types, but wish to compare results obtained from the
two distinct processes nevertheless. A more complex evidentiary argument is
required. It must address the way that observations from the two processes bear

different relationships to the construct we want to measure, and it must indicate

how to take these differences into account in our inferences.

Fairness. Fairness is a term that encompasses more territory than we can
address in this report. Many of its senses concern social, political, and educational

perspectives on the uses to which assessment results inform (Willingham &
Cole, 1997)legitimate questions all, which would exist even if the chain of
reasoning from observations to constructs contained no uncertainty whatsoever.

Like Wiley (1991), we focus our attention here on construct meaning rather than

use or consequences, and consider aspects of fairness that bear directly on this
portion of the evidentiary argument.

Fairness in this sense concerns alternative explanations of assessment
performances in light of other characteristics of students that we could and
should take into account. Ideally, the same warrant backs inferences about many
students, reasoning from their particular data to a claim about what each
individually knows or can do. This is never quite truly the case in practice, for

factors such as language background, instructional background, and familiarity

with representations surely influence performance. When the same argument is

to be applied with many students, considerations of fairness require us to
examine the impact of such factors on performance and identify the ranges of
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their values beyond which the common warrant can no longer be justified.
Drawing the usual inference from the usual data for a student who lies outside
this range leads to inferential errors. If they are errors we should have foreseen

and avoided, they are unfair. Ways of avoiding such errors are using additional
knowledge about students to condition our interpretation of what we observe

under the same procedures and gathering data from different students in
different ways, such as providing accommodations or allowing students to
choose among ways of providing data (and accepting the responsibility as
assessors to establish the comparability of data so obtained!).

A Framework for Assessment Design

This section lays out a schema for the evidentiary argument that underlies
educational assessments, incorporating both its substantive and statistical aspects.

It is based on the "evidence-centered" framework for assessment design
illustrated in Mislevy, Steinberg, and Almond (in press) and Mislevy, Steinberg,

Breyer, Almond, and Johnson (1999; in press). We'll use it presently to examine
psychometric principles from a more technical perspective. The framework
formalizes another quotation from Messick:

A construct-centered approach [to assessment design] would begin by asking what
complex of knowledge, skills, or other attribute should be assessed, presumably because

they are tied to explicit or implicit objectives of instruction or are otherwise valued by

society. Next, what behaviors or performances should reveal those constructs, and

what tasks or situations should elicit those behaviors? Thus, the nature of the construct

guides the selection or construction of relevant tasks as well as the rational
development of construct-based scoring criteria and rubrics (Messick, 1994, p. 16).

Figure 1, presented back in the introductory example, depicts elements and
relationships that must be present, at least implicitly, and coordinated, at least
functionally, in any assessment that has evolved to effectively serve some
inferential function. Making this structure explicit helps an evaluator

understand how to first gather, then reason from, data that bear on what
students know and can do.

In brief, the student model specifies the variables in terms of which we wish

to characterize students. Task models are schemas for ways to get data that
provide evidence about them. Two components, which are links in the chain of
reasoning from students' work to their knowledge and skill: The scoring
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component of the evidence model contains procedures for extracting the salient
features of student's performances in task situationsi.e., observable

variablesand the measurement component contains machinery for updating
beliefs about student-model variables in light of this information. These models
are discussed in more detail below. Taken together, they make explicit the
evidentiary grounding of an assessment, and they guide the choice and
construction of particular tasks, rubrics, statistical models, and so on. A n
operational assessment will generally have one student model, which may
contain many variables, but may use several task and evidence models to
provide data of different forms or with different rationales.

The Student Model: What Complex of Knowledge, Skills, or Other Attributes

Should Be Assessed?

The values of student-model variables represent selected aspects of the
infinite configurations of skill and knowledge real students have, based on a
theory or a set of beliefs about skill and knowledge in the domain. These
variables are the vehicle through which we determine student progress, make
decisions, or plan instruction for students. The number and nature of the
student-model variables depend on the purpose of an assessment. A single
variable characterizing overall proficiency in algebra might suffice in an
assessment meant only to support a pass/fail decision; a coached practice system
to help students develop the same proficiency might require a finer grained
student model, to monitor how a student is doing on particular aspects of skill
and knowledge for which we can offer feedback. When the purpose is program
evaluation, the student-model variables should reflect hypothesized ways i n
which a program may enjoy more or less success, or promote students' learning
in some ways as opposed to others.

In the standard argument, then, a claim about what a student knows, can
do, or has accomplished is expressed in terms of values of student-model
variables. Substantive concerns about the desired outcomes of instruction, say, or
the focus of a program evaluation, will suggest what the student-model variables
might be, and give substantive meaning to the values of student-model
variables. The student model provides a language for expressing claims about
students, restricted and simplified to be sure, but one that is amenable to
probability-based reasoning for drawing inferences and characterizing beliefs. A
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following section will explain how we can express what we know about a given
student's values for these variables in terms of a probability distribution, which

can be updated as new evidence arrives.

Task Models: What Tasks or Situations Should Elicit Those Behaviors?

A task model provides a framework for constructing and describing the
situations in which examinees act. We use the term "task" in the sense proposed
by Haertel and Wiley (1993), to refer to a "goal-directed human activity to be

pursued in a specified manner, context, or circumstance." A task can thus be an
open-ended problem in a computerized simulation, a long-term project such as a
term paper, a language-proficiency interview, or a familiar multiple-choice or
short-answer question.

A task model specifies the environment in which the student will say, do,

or produce something; for example, characteristics of stimulus material,
instructions, help, tools, and so on. It also specifies the work product, or the form
in which what the student says, does, or produces will be captured. But again it is
substantive theory and experience that determine the kinds of situations that can
evoke behaviors that provide clues about the targeted knowledge and skill, and
the forms in which those clues can be expressed and captured.

To create a particular task, an assessment designer has explicitly or
implicitly assigned specific values to task model variables, provided materials
that suit the specifications there given, and set the conditions that are required to
interact with the student. A task thus describes particular circumstances meant to
provide the examinee an opportunity to act in ways that produce evidence about
what they know or can do more generally. For a particular task, the values of its
task model variables constitute data for the evidentiary argument, characterizing
the situation in which the student is saying, doing, or making something.

It is useful to distinguish task models from the scoring models discussed i n
the next section, as the latter concern what to attend to in the resulting
performance and how to evaluate what we see. Distinct and possibly quite
different evaluation rules could be applied to the same work product from a
given task. Distinct and possibly quite different student models, designed to serve
different purposes or derived from different conceptions of proficiency, could be
informed by performances on the same tasks. The substantive arguments for the
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evidentiary value of behavior in the task situation will overlap in these cases,

but the specifics of the claims and thus the specifics of the statistical links in the

chain of reasoning will differ.

Evidence Models: What Behaviors or Performances Should Reveal the Student

Constructs, and What Is the Connection?

An evidence model lays out the part of the evidentiary argument that
concerns reasoning from the observations in a given task situation to revising
beliefs about student-model variables. Figure 1 shows there are two parts to the

evidence model.

The scoring component contains "evidence rules" for extracting the salient

features of whatever the student says, does, or creates in the task situationi.e.,
the "work product" that is represented by the jumble of shapes in the rectangle at

the far right of the evidence model. A work product is a unique human
production, perhaps as simple as a response to a multiple-choice item, or as

complex as repeated cycles of treating and evaluating patients in a medical
simulation. The squares coming out of the work product represent "observable
variables," or evaluative summaries of what the assessment designer has

determined are the key aspects of the performance (as captured in one or more
work products) to serve the assessment's purpose. Different aspects could be

captured for different purposes. For example, a short impromptu speech contains

information about a student's subject matter knowledge, presentation

capabilities, or English language proficiency; any of these, or any combination,
could be the basis of one or more observable variables. As a facet of fairness,

however, the student should be informed of which aspects of the performance

are being evaluated and by what criteria. For students failing to understand how

their work will be scored is an alternative hypothesis for poor performance we

can and should avoid.

Scoring rules map unique performances into a common interpretative

framework, thus laying out what is important in a performance. These rules can

be as simple as determining whether the response to a multiple-choice item is

correct, or as complex as an expert's holistic evaluation of multiple aspects of an
unconstrained patient-management solution. They can be automated, demand

human judgment, or require both in combination. Values of the observable



variables describe properties of the particular things a student says, does, or

makes. As such, they constitute data about what the student knows, can do, or
has accomplished as more generally construed in the standard argument.

It is important to note that substantive concerns drive the definition of
observable variables. Statistical analyses can be used to refine definitions,

compare alternatives, or improve data-gathering procedures, again looking for
patterns that call a scoring rule into question. But it is the conception of what to
observe that concerns validity directly and raises questions of alternative
explanations that bear on comparability and fairness.

The measurement component of the Evidence Model tells how the
observable variables depend, in probabilistic terms, on student-model variables,
another essential link in the evidentiary argument. This is the foundation for
the reasoning that is needed to synthesize evidence across multiple tasks or from
different performances. Figure 1 shows how the observables are modeled as
depending on some subset of the student-model variables. The familiar models
from test theory that we discuss in a following section, including classical test
theory and item response theory, are examples. We can adapt these ideas to suit
the nature of the student model and observable variables in any given
application (Almond & Mislevy, 1999). Again, substantive considerations must
underlie why these posited relationships should hold; the measurement model

formalizes the patterns they imply.

It is a defining characteristic of psychometrics to model observable variables

as probabilistic functions of unobservable student variables. The measurement
model is almost always a probability model. The probability-based framework

model may extend to the scoring model as well, as when judgments are required
to ascertain the values of observable variables from complex performances.
Questions of accuracy,' agreement, leniency, and optimal design arise, and can be

addressed with a measurement model that addresses the rating link as well as
the synthesis link in the chain of reasoning. The generalizability and rater
models discussed below are examples of this.
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Psychometric Principles and Probability-Based Reasoning

The Role of Probability-Based Reasoning in the Assessment

This section looks more closely at what is perhaps the most distinctive

characteristic of psychometrics, namely, the use of statistical models.

Measurement models are a particular form of reasoning from evidence; they

provide explicit, formal rules for how to integrate the many pieces of
information that may be relevant to a particular inference about what students

know and can do. Statistical modeling, probability-based reasoning more
generally, is an approach to solving the problem of "reverse reasoning" through

a warrant, from particular data to a particular claim. Just how can we reason
from data to claim for a particular student, using a measurement model
established for general circumstancesusually far less than certain, typically
with qualifications, perhaps requiring side conditions we don't know are
satisfied? How can we synthesize the evidentiary value of multiple observations,

perhaps from different sources, which are often in conflict?

The essential idea is to approximate the important substantive relationships

in some real-world problem in terms of relationships among variables in a
probability model. A simplified picture of the real-world situation results. A

useful model does not explain all the details of actual data, but it does capture the
significant patterns among them. What is important is that in the space of the
model, the machinery of probability-based reasoning indicates exactly how

reverse reasoning is to be carried out (specifically, through Bayes theorem) and

how different kinds and amounts of data should affect our beliefs. The trick is to

build a probability model that both captures the important real-world patterns

and suits the purposes of the problem at hand.

Measurement models concern the relationships between students'

knowledge and their behavior. A student is modeled in terms of variables (0)

that represent the facets of skill or knowledge that suit the purpose of the
assessment, and the data (X) are values of variables that characterize aspects of

the observable behavior. We posit that the student-model variables account for

observable variables in the following sense: We don't know exactly what any
student will do on a particular task, but for people with any given value of 0,

there is a probability distribution of possible values of X, say p(X 10). This is a



mathematical expression of what we might expect to see in data, given any
possible values of student-model variables. The way is open for reverse
reasoning, from observed X's to likely ffs, as long as different values of ()produce
different probability distributions for X. We don't know the values of the
student-model variables in practice; we observe "noisy" data presumed to have
been determined by them, and through the probability model reason back to

what their values are likely to be.

Choosing to manage information and uncertainty with probability-based
reasoning, with its numerical expressions of belief in terms of probability

distributions, does not constrain one to any particular forms of evidence or
psychological frameworks. That is, it says nothing about the number or nature of
elements of X, or about the character of the performances, or about the
conditions under which performances are produced. And it says nothing about
the number or nature of elements of 0, such as whether they are number values
in a differential psychology model, production-rule mastery in a cognitive
model, or tendencies to use resources effectively in a situative model. In
particular, using probability-based reasoning does not commit us to long tests,
discrete tasks, or large samples of students. For example, probability-based models
have been found useful in modeling patterns of judges' ratings in the previously
mentioned Advanced Placement Portfolio Art assessment (Myford & Mislevy,
1995), about as open-ended as large-scale, high-stakes educational assessments
get, and in modeling individual students' use of production rules in a tutoring
system for solving physics problems (Martin & vanLehn, 1995).

Now a measurement model in any case is not intended to account for every
detail of data; it is only meant to approximate the important patterns. The

statistical concept of conditional independence formalizes the working

assumption that if the values of the student-model variables were known, there
would be no further information in the details. The fact that every detail of a
student's responses could in principle contain information about what they
know or how they are thinking underscores the constructive and purposive
nature of modeling. We use a model at a given grainsize or with certain kinds of
variables not because we think that is somehow "true," but rather because it
adequately expresses the patterns in the data in light of the purpose of the
assessment. Adequacy in a given application depends on validity, reliability,

comparability, and fairness in ways we shall discuss further, but characterized in
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ways and demanded in degrees that depend on that application: the purpose of
the assessment, the resources that are available, and the constraints that must be
accommodated. We might model the same troubleshooting performances in
terms of individual problem steps for an intelligent tutoring system in terms of

general areas of strength and weakness for a diagnostic assessment, and simply in
terms of overall success rate for a pass/fail certification test.

Never fully believing the statistical model we are reasoning through, we
bear the responsibility of assessing model fit, in terms of both persons and items.
We must examine the ways and the extent to which the real data depart from the
patterns in the data, calling our attention to failures of conditional
independenceplaces where our simplifying assumptions miss relationships
that are surely systematic, and possibly important, in the data. Finding
substantial misfit causes us to re-examine the arguments that tell us what to
observe and how to evaluate it.

Probability-Based Reasoning in Classical Test Theory

This section illustrates the ideas from the preceding discussion in the
context of Classical Test Theory (CTT). In CTT, the student model is represented

as a single continuous unobservable variable, the true score 0. The measurement
model simply tells us to think of an observed score X as the true score plus an
error term. If a CTT measurement model were used in the BEAR example, it
would address the sum of the student scores on a set of assessment tasks as the
observed score.

Figure 9 pictures the situation, in a case that concerns Sue's (unobservable)
true score and her three observed scores on parallel forms of the same test; that
is, they are equivalent measures of the same construct and have the same means
and variances. The probability distribution p(0) expresses our belief about Sue's 0
before we observe her test scores, the X's. The conditional distributions p(Xi I 0)3
indicate the probabilities of observing different values of Xi if 0 took any given
particular value. Modeling the distribution of each Xi to depend on 0 but not the
other X's is an instance of conditional independence; more formally, we write

3 p(Xi I 0) is the probability density function for the random variable X1, given that 0 is fixed at a
specified value.
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p(X2,X2,X3 16) = p(X, I 0) p(X2 16) p(X3 I 0). Under CTT we may obtain a form for the

p(Xi I 0)s by proposing that

= 0 + Ei, (1)

where Ei is an "error" term, normally distributed with a mean of zero and a
variance of (YE .4 Thus X7 16 N( 0,crE ). This statistical structure quantifies the

patterns that the substantive arguments express qualitatively in a way that tells
us exactly how to carry out reverse reasoning for particular cases. If p(0) expresses

belief about Sue's 0 prior to observing her responses, belief posterior to learning
them is denoted as p(0 I xi,x2,x3) and is calculated by Bayes theorem as

p(6lxvx,,x3) a p(0) p(x,10) P(x21 P(x31 0).

(The lowercase x's here denote particular values of X's.)

p(°)

Figure 9. Statistical representation for
classical test theory.

4 Strictly speaking, CTT does not address the full distributions of true and observed scores, only
means, variances, and covariances. But we want to illustrate probability-based reasoning and
review CTT at the same time. Assuming normality for 9 and E is the easiest way to do this, since
the first two moments are sufficient for normal distributions.
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Figure 10 gives the numerical details for a hypothetical example, calculated

with a variation of an important early result called Kelley's formula for

estimating true scores (Kelley, 1927). Suppose that from a large number of
students like Sue we've estimated that the measurement error variance is

2(7E =25, and for the population of students, 0 follows a normal distribution with

mean 50 and standard deviation 10. We now observe Sue's three scores, which
take the values 70, 75, and 85. We see that the posterior distribution for Sue's 0 is

a normal distribution with mean 74.6 and standard deviation 2.8.

Theorem

Let N cr) denote the normal (Gaussian) distribution with mean ft and standard

deviation C7' . If the prior distribution of 0 is AT (po,cr) and the X is N (0, ar), then the

distribution for °posterior to observing Xis N (p cr ra), where Crp, = (cro-'2 +

and pr, = kao- + )/(0-2 + o-E-2 ) .

Calculating the posterior distribution for Sue
Beginning with an initial distribution of N (50,10) , we can compute the posterior

distribution for Sue's °after seeing three independent responses by applying the theorem
three times, in each case with the posterior distribution from one step becoming the prior
distribution for the next step.

a) Prior distribution: 0- N (50,10) .

b) After the first response: Given d- -N ( 50,10) and Xi N(8,5), observing X1=70 yields the

posterior N (66.0,4 .5) .

c) After the second response: Given 0- N (66.0, 4 .5) and N (8, 5) , observing X2=75

yields the posterior N(70.0,3.3) .

d) After the third response: Given 0- N (70.0, 3 .3) and X3- N(8,5), observing X385 yields

the posterior N (74 .6,2.8) .

Calculating a fit index for Sue
Suppose each of Sue's scores came from a N(0,5) distribution. Using the posterior mean

we estimated from Sue's scores, we can calculate how likely her response vector is under this
measurement model using a chi-square test of fit:

1(70-74.6)/ 512 + 1(75-74.6)/5r + 1(85-74.6)/512 = .85+.01+4.31 = 5.17.

Checking against the chi-square distribution with two degrees of freedom, we see that about
8% of the values are higher than this, so this vector is not that unusual.

Figure 10. A numerical example using classical test theory.
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The additional backing that was used to bring the probability model into the
evidentiary argument was an analysis of data from students like Sue. Spearman's
(1904) seminal insight was that if their structure is set up in the right way,5 it is

possible to estimate the quantitative features of relationships like this, among
both variables that could be observed and others which by their nature never can
be. The index of measurement accuracy in CTT is the reliability coefficient p,
which is the proportion of variance in observed scores in a population of interest
that is attributable to true scores as opposed to the total variance, which is
composed of true score variance and noise. It is defined as follows:

2

Qe

co cE
(2)

where Co is the variance of true score in the population of examinees and 3E2 is

the variance of the error componentsneither of which is directly observable!

With a bit of algebra, though, Spearman demonstrated that if Equation 1 holds,
correlations among pairs of X's will approximate p. We may then estimate the
contributions of true score and error, or a02 and 0.2E , as proportions p and (1-p)

respectively of the observed score variance. The intuitively plausible notion is
that correlations among exchangeable measures of the same construct tell us
how much to trust comparisons among examinees from a single measurement.
(As an index of measurement accuracy, however, p suffers from its dependence

on the variation among examinees' true scores as well as on the measurement
error variance of the test. For a group of examinees with no true-score variance,
the reliability coefficient is zero no matter how much evidence a test provides
about each of them. We'll see how item response theory extends the idea of

measurement accuracy.)

What's more, patterns among the observables can be so contrary to those
the model would predict that we suspect the model isn't right. Sue's values of 70,
75, and 85 are not identical, but neither are they surprising as a set of scores
(Figure 10 calculates a chi-squared index of fit for Sue). Some students have
higher scores than Sue. Some have lower scores. But the amount of variation

5 In statistical terms, if the parameters are identified. Conditional independence is key, because CI
relationships enable us to make multiple observations that are assumed to depend an the same
unobserved variables in ways we can model. This generalizes the concept of replication that
grounds reliability analysis.
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within a typical student's set of scores is in this neighborhood. But Richard's
three scores of 70, 75, and 10 are surprising. His high fit statistic (a chi-square of
105 with 2 degrees of freedom) says his pattern is very unlikely from parallel tests
with an error variance of 25 (less than one in a billion). Richard's responses are
so discordant with a statistical model that expresses patterns under the standard
argument that we suspect that the standard argument does not apply. We must
go beyond the standard argument to understand what has happened, to facts the
standard data do not convey. Our first clue is that his third score is particularly
different from both the other two and from the prior distribution.

Classical test theory's simple model for examinee characteristics suffices
when one is just interested in a single aspect of student achievement, tests are
only considered as a whole, and all students take tests that are identical or
practically so. But the assumptions of CTT have generated a vast
armamentarium of concepts and tools that help the practitioner examine the
extent to which psychometric principles are being attained in situations when
the assumptions are adequate. These tools include reliability indices that can be
calculated from multiple items in a single test, formulas for errors of measuring
individual students, strategies for selecting optimal composites of tests, formulas
for approximating how long a test should be to reach a required accuracy, and
methods for equating tests. The practitioner working in situations that CTT
encompasses will find a wealth of useful formulas and techniques in Gulliksen's
(1950/1987) classic text.

The Advantages of Using Probability-Based Reasoning in Assessment

Because of its history, the very term psychometrics connotes a fusion of the
inferential logic underlying Spearman's reasoning with his psychology (trait
psychology, in particular with intelligence as an inherited and stable

characteristic) and his data-gathering methods (many short, "objectively-scored,"
largely decontextualized tasks). The connection, while historically grounded, is
logically spurious, however. For the kinds of problems that CTT grew to solve
are not just Spearman's problems, but ones that ought to concern anybody who is
responsible for making decisions about students, evaluating the effects of

instruction, or spending scarce educational resourceswhether or not
Spearman's psychology or methodology are relevant to the problem at hand.
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And indeed, the course of development of test theory over the past century
has been to continually extend the range of problems to which this inferential
approach can be appliedto claims cast in terms of behavioral, cognitive, or
situative psychology6; to data that may be embedded in context, require
sophisticated evaluations, or address multiple interrelated aspects of complex
activities. We will look at some of these developments in the next section. But it

is at a higher level of abstraction that psychometric principles are best
understood, even though it is with particular models and indices that they are
investigated in practice.

When it comes to examining psychometric properties, embedding the
assessment argument in a probability model offers the following advantages.

1. Using the calculus of probability-based reasoning, once we ascertain the
values of the variables in the data, we can express our beliefs about the
likely values of the student estimates in terms of probability
distributionsgiven that the model is both generally credible (#3 below)
and applicable to the case at hand (#4 below).

2. The machinery of probability-based reasoning is rich enough to handle
many recurring challenges in assessment, such as synthesizing
information across multiple tasks, characterizing the evidentiary
importance of elements or assemblages of data, assessing comparability
across different bodies of evidence, and exploring the implications of
judgment, including different numbers and configurations of raters.

3. Global model-criticism techniques allow us to not only fit models to
data, but to determine where and how the data do not accord well with
the models. Substantive considerations suggest the structure of the
evidentiary argument; statistical analyses of ensuing data through the
lens of a mathematical model help us assess whether the argument
matches up with what we actually see in the world. For instance,
detecting an unexpected interaction between performance on an item
and students' cultural backgrounds alerts us to an alternate explanation
of poor performance. We are then moved to improve the data gathering
methods, constrain the range of use, or rethink the substantive
argument.

4. Local model-criticism techniques allow us to monitor the operation of
the reverse-reasoning step for individual students even after the
argument, data-collection methods, and statistical model are up and
running. Patterns of observations that are unlikely under the common
argument can be flagged (e.g., Richard's high chi-square value), thus

6 See Greeno, Collins, and Resnick (1996) for an overview of these three perspectives on learning
and knowing, and discussion of their implications for instruction and assessment.
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avoiding certain unsupportable inferences and drawing attention to
those cases that call for additional exploration.

Implications for Psychometric Principles

Validity. Some of the historical "flavors" of validity are statistical in nature.
Predictive validity is the degree to which scores in selection tests correlate with
future performance. Convergent validity looks for high correlations of a test's
scores with other sources of evidence about the targeted knowledge and skills,
while divergent validity looks for low correlations with evidence about

irrelevant factors (Campbell & Fiske, 1959). Concurrent validity examines
correlations with other tests presumed to provide evidence about the same or
similar knowledge and skills.

The idea is that substantive considerations that justify an assessment's
conception and construction can be put to empirical tests. In each of the cases
mentioned above, relationships are posited among observable phenomena that
would hold if the substantive argument were correct, and see if in fact they do;
that is, exploring the nomothetic net. These are all potential sources of backing
for arguments for interpreting and using test results, and they are at the same
time explorations of plausible alternative explanations.

Consider, for example, assessments meant to support decisions about
whether a student has attained some criterion of performance (Ercikan & Julian,
2001; Hambleton & Slater, 1997). These decisions, typically reported as proficiency

or performance level scores, which are increasingly being considered to be useful
in communicating assessment results to students, parents and the public as well

as for evaluation of programs, involve classification of examinee performance to

a set of proficiency levels. Rarely do the tasks on such a test exhaust the full range
of performances and situations users are interested in. Examining the validity of
a proficiency test from this nomothetic-net perspective would involve seeing
whether students who do well on that test also perform well in more extensive
assessment, obtain high ratings from teachers or employers, or succeed in
subsequent training or job performance.

Statistical analyses of these kinds have always been important after the fact,
as significance-focused validity studies informed, constrained, and evaluated the
use of a testbut they rarely prompted more than minor modifications to its
contents. Rather, Embretson (1998) notes, substantive considerations have
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traditionally driven assessment construction. Neither of two meaning-focused

lines of justification that were considered forms of validity used probability-based
reasoning. They were content validity, which concerned the nature and mix of
items in a test, and face validity, which is what a test appears to be measuring on
the surface, especially to nontechnical audiences. We will see in our discussion
of item response theory how statistical machinery is increasingly being used i n

the exploration of construct representation as well in after-the-fact validity

studies.

Reliability. Reliability, historically, was used to quantify the amount of

variation in test scores that reflected "true" differences among students, as
opposed to noise (Equation 2). The correlations between parallel tests forms we
used in classical test theory are one way to estimate reliability in this sense.
Internal consistency among test items, as gauged by the KR-20 formula (Kuder &

Richardson, 1937) or Cronbach's (1951) Alpha coefficient, is another. A
contemporary view sees reliability as the evidentiary value that a given realized
or prospective body of data would provide for a claimmore specifically, the
amount of information for revising belief about an inference involving student-
model variables, be it an estimate for a given student, a comparison among
students, or a determination of whether a student has attained some criterion of

performance.

A wide variety of specific indices or parameters can be used to characterize

evidentiary value. Carrying out a measurement procedure two or more times
with supposedly equivalent alternative tasks and raters will not only ground an
estimate of its accuracy, as in Spearman's original procedures, but it demonstrates
convincingly that there is some uncertainty to deal with in the first place
(Brennan, 2000/in press). The KR-20 and Cronbach's alpha apply the idea of
replication to tests that consist of multiple items, by treating subsets of the items

as repeated measures. These CTT indices of reliability appropriately characterize
the amount of evidence for comparing students in a particular population with

one another, but not necessarily for comparing them against a fixed standard, or
for comparisons in other populations, or for purposes of evaluating schools or
instructional programs. In this sense, CTT indices of reliability are tied to
particular populations and inferences.

Since reasoning about reliability takes place in the realm of the
measurement model (assuming that it is both correct and appropriate), it is
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possible to approximate the evidentiary value of not only the data in hand, but
the value of similar data gathered in somewhat different ways. Under CTT, the
Spearman-Brown formula (Brown, 1910; Spearman, 1910) can be used to
approximate the reliability coefficient that would result from doubling the length
of a test:

2p
Pdoubie =

1 + p
(3)

That is, if p is the reliability of the original test, then °double is the reliability of
an otherwise comparable test with twice as many items. Empirical checks have
shown that these predictions can hold up quite wellbut not if the additional
items differ as to their content or difficulty, or if the new test is long enough to
fatigue students. In these cases, the real-world counterparts of the modeled
relationships are stretched so far that the results of reasoning through the model
fail.

Extending this thinking to a wider range of inferences, generalizability
theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972) permits predictions for
the accuracy of similar tests with different numbers and configurations of raters,
items, and so on. And once the parameters of tasks have been estimated under
an item response theory (IRT) model, one can even assemble tests item by item
to individual examinees on the fly, to maximize the accuracy with which each is
assessed. (Later we'll point to some "how-to" references for g-theory and IRT.)

Typical measures of accuracy used in CTT are not sufficient for examining
accuracy of the decisions concerning criterion of performance discussed above. In
CTT framework, the classification accuracy is defined as the extent to which
classification of students based on their observed test scores agree with those
based on their true scores (Traub & Rowley, 1980). One of the two commonly
used measures of classification accuracy is a simple measure of agreement, po,
defined as

PO EP II,
1=1

where pu represents the proportion of examinees who were classified into the
same proficiency level (1=2,..,5) according to their true score and observed score.
The second is Cohen's lc coefficient (Cohen, 1960). This statistic is similar to the
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proportion agreement Po , except that it is corrected for the agreement which is

due to chance. The coefficient is defined as

where

po p
1 pc

PC = EP,. P.,

The accuracy of classifications based on test scores is critically dependent on
measurement accuracy at the cut-score points (Ercikan & Julian, 2001; Hambleton

& Slater, 1997). Even though higher measurement accuracy tends to imply
higher classification accuracy, higher reliability such as one indicated by KR-20 or

Coefficient alpha does not imply higher classification accuracy. These measures
provide an overall indication of measurement accuracy provided by the test for

all examinees, however, they do not provide information about the
measurement accuracy provided at the cut-scores. Therefore, they are not
sufficient indicators of accuracy of classification decisions made based on test

performance.

On the other hand, measurement accuracy is expected to vary for different

score ranges resulting in variation in classification accuracy. This points to a
serious limitation of interpretability of single indices that are intended to
represent classification accuracy of a test, given a set of cut-scores. Ercikan &
Julian's (2001) study found that the classification accuracy can be dramatically
different for examinees at different ability levels. Their results demonstrated that

comparing classification accuracy across tests could be deceptive, since

classification accuracy may be higher for one test for certain score ranges and

lower for others. Based on these limitations of interpretability of classification

accuracy for different score ranges, these authors recommend that classification
accuracy be reported separately for different score ranges.

Comparability. Comparability, it will be recalled, concerns the equivalence
of inference when different bodies of data are gathered to compare students, or to

assess change from the same students at different points in time. Within a
statistical framework, we can build models that address quantitative aspects of

questions such as these: Do the different bodies of data have such different
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properties as evidence as to jeopardize the inferences? Are conclusions about
students' knowledge biased in one direction or another when different data are
gathered? Is there more or less weight for various claims under the different

alternatives?

A time-honored way of establishing comparability has been creating parallel
test forms. A common rationale is developed to create collections of tasks which,
taken together, can be argued to provide data about the same targeted skills and
knowledgediffering, it is hoped, only in incidentals that do not accumulate:
defining a knowledge-by-skills matrix, for example, writing items in each cell,

and constructing tests by selecting the same numbers of tasks from each cell for

every test form. The same substantive backing thus grounds all the forms.

But it would be premature to presume that equal scores from these tests
constitute equivalent evidence about students' knowledge. Despite care in their
construction, possible differences between the tests as to difficulty or amount of

information must be considered as an alternative explanation for differing
performances among students. Empirical studies and statistical analyses enter the
picture at this point, in the form of equating studies (Petersen, Kolen, & Hoover,
1989). Finding that similar groups of students systematically perform better on
Form A than on Form B confirms the alternative explanation. Adjusting scores
for Form B upward to match the resulting distributions addresses this concern,
refines the chain of reasoning to take form differences into account when
drawing claims about students, and enters the compendium of backing for the
assessment system as a whole. Below we shall see that IRT extends comparability

arguments to test forms that differ in difficulty and accuracy, if they can satisfy

the requirements of a more ambitious statistical model.

Fairness. The meaning-focused sense of fairness we have chosen to
highlight concerns a claim that would follow from the common argument, but

would be called into question by an alternative explanation sparked by other
information we could and should have taken into account. When we extend the

discussion of fairness to statistical models, we find macro-level and micro-level

strategies to address this concern.

Macro-level strategies of fairness fall within the broad category of what the

assessment literature calls validity studies, and are investigations in the

nomothetic net. They address broad patterns in test data, at the level of
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arguments or alternative explanations in the common arguments that are used
with many students. Suppose the plan for the assessment is to use data (say, essay

responses) to back a claim about a student's knowledge (e.g., the student can back
up opinions with examples) through an argument (e.g., students in a pretest who
are known to be able to do this in their first language are observed to do so in
essays that ask for them to), without regard to a background factor (such as a
student's first language). The idea is to gather, from a group of students, data that
include their test performances but also include information about their first
language and higher quality validation data about the claim (e.g., interviews in
the students' native languages). The empirical question is whether inferences
from the usual data to the claim (independently evidenced by the validity data)
differ systematically with first language. In particular, are there students who can
back arguments with specifics in their native language but fail to do so on the
essay test because of language difficulties? If so, the door is open to distorted
inferences about argumentation skills for limited English speakers, if one
proceeds from the usual data through the usual argument, disregarding language

proficiency.

What can we do when the answer is "yes"? Possibilities include improving
the data collected for all students, taking their first language into account when
reasoning from data to claim (recognizing the language difficulties can account
for poor performance even when the skill of interest is present), and pre-
identifying students whose limited language proficiencies are likely to lead to
flawed inferences about the targeted knowledge. In this last instance, additional

or different data could be used for these students, such as an interview or an
essay in their primary language.

These issues are particularly important in assessments used for making
consequential proficiency-based decisions, in ways related to the points we raised
concerning the validity of such tests. Unfair decisions are rendered if (a)

alternative valid means of gathering data for evaluating proficiency yield results
that differ systematically from the standard assessment, and (b) the reason can be

traced to requirements for knowledge or skills (e.g., proficiency with the English
language) that are not central to the knowledge or skill that is at issue (e.g.,
constructing and backing an argument).

The same kinds of investigations can be carried out with individual tasks as
well as with assessments as a whole. One variation on this theme can be used
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with assessments that are composed of several tasks, to determine whether
individual tasks interact with first language in atypical ways. These are called

studies of DIF, or differential item functioning (Holland & Wainer, 1993).

Statistical tools can also be used to implement micro-level strategies to call

attention to cases in which a routine application of the standard argument could

produce a distorted and possibly unfair inference. The common argument
provides a warrant to reason from data to claim, with attendant caveats for

unfairness associated with factors (such as first language) that have been dealt

with at the macro level. But the argument may not hold for some individual
students for other reasons, which have not yet been dealt with at the macro
level, and perhaps could not have been anticipated at all. Measurement models
characterize patterns in students' data that are typical if the general argument
holds. Patterns that are unlikely can signal that the argument may not apply with

a given student on a given assessment occasion. Under IRT, for example,
"student misfit" indices take high values for students who miss items that are
generally easy while correctly answering ones that are generally hard (Levine &

Drasgow, 1982.)

Some Other Widely Used Measurement Models

The tools of classical test theory have been continually extended and refined

in the time since Spearman, to the extensive toolkit by Gulliksen (1950/1987),

and to the sophisticated theoretical framework laid out in Lord and Novick
(1968). Lord and Novick aptly titled their volume Statistical Theories of Mental

Test Scores, underscoring their focus on the probabilistic reasoning aspects in the
measurement-model links of the assessment argumentnot the purposes, not
the substantive aspects, not the evaluation rules that produce the data. Models

that extend the same fundamental reasoning for this portion of assessment
arguments to wider varieties of data and student models include generalizability

theory, item response theory, latent class models, and multivariate models.

Each of these extensions offers more options for characterizing students and

collecting data in a way that can be embedding in a probability model. The
models do not concern themselves directly with substantive aspects of an
assessment argument, but substantive considerations often have much to say
about how one should think about students' knowledge, and what observations

should contain evidence about it. The more measurement models that are
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available and the more kinds of data than can be handled, the better assessors can

match rigorous models with the patterns their theories and their needs concern.

This bolsters evidentiary arguments (validity), extends quantitative indices of

accuracy to more situations (reliability), enables more flexibility in observational
settings (comparability), and enhances the prospects of detecting students whose

data are at odds with standard argument (fairness).

Generalizability Theory

Generalizability Theory (g-theory) extends classical test theory by allowing

us to examine how different aspects of the observational setting affect the

evidentiary value of test scores. As in CTT, the student is characterized by overall

proficiency in some domain of tasks. However, the measurement model can

now include parameters that correspond to "facets" of the observational
situation such as features of tasks (i.e., task-model variables), numbers and
designs of raters, and qualities of performance that will be evaluated. An
observed score of a student in a generalizability study of an assessment consisting

of different item types and judgmental scores is an elaboration of the basic CTT

equation:
X = + Tj +ck -F Euk,

where we now address the observed score is from Examinee i, to Item-Type j, as

evaluated by Rater k; 0; is the true score of Examinee i; and ri and ;k are,

respectively, effects attributable to Item-Type j and Rater k.

Researchers carry out a generalizability study, or g-study, to estimate the

amount of variation associated with different facets. The accuracy of estimation

of scores for a given configuration of tasks can be calculated from these variance

components, the numbers of items and raters, and the design in which data are

collected. A "generalizability coefficient" is an extension of the CTT reliability

coefficient: It is the proportion of true variance among students for the condition

one wishes to measure, divided by the variance among observed scores among
the measurements that would be obtained among repeated applications of the

measurement procedure that is specified (how many observations, fixed or
randomly selected; how many raters rating each observation, different or same

raters for different items, etc.). If, in the example above, we wanted to estimate 0

using one randomly selected item, scored as the average of the ratings from two
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randomly selected raters, the coefficient of generalizability, denoted here as a,
would be calculated as follows:

=
2

68
2 2 (3 2 2 ) A

CrO Crr + 5 + CrE r

where 602 , ac2 and QE are variance coefficients for examinees, item-types,

raters, and error respectively.

The information resulting from a generalizability study can thus guide
decisions about how to design procedures for making observations; for example,
what design for assigning raters to performances, how many tasks and raters, and
whether to average across raters, tasks, etc. In the BEAR Assessment System, a g-
study could be carried out to see which type of assessment, embedded tasks or
link items, resulted in more reliable scores. It could also be used to examine
whether teachers were as consistent as external raters.

G-theory offers two important practical advantages over CTT: First,

generalizability models allow us to characterize how the particulars of the
evaluation rules and task model variables affect the value of the evidence we
gain about the student for various inferences. Second, this information is

expressed in terms that allow us to project these evidentiary-value
considerations to designs we have not actually used, but which could be
constructed from elements similar to the ones we have observed. G-theory thus
provides far-reaching extensions of the Spearman-Brown formula (Equation 3)
for exploring issues of reliability and comparability in a broader array of data-
collection designs than CTT can.

Generalizability theory was developed by Professor Lee Cronbach and his
colleagues, and their monograph, The Dependability of Behavioral
Measurements (Cronbach et al., 1972), remains a valuable source of information
and insight. More recent sources, such as Shavelson and Webb (1991) and
Brennan (1983), provide the practitioner with friendlier notation and examples
to build on.

Item Response Theory (IRT)

Classical test theory and generalizability theory share a serious shortcoming:
measures of examinees are confounded with the characteristics of test items. It is
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hard to compare examinees who have taken tests that differ by even as much as a

single item, or to compare items that have been administered to different groups

of examinees. Item Response Theory (IRT) was developed to address this
shortcoming. In addition, IRT can be used to make predictions about test
properties using item properties and to manipulate parts of tests to achieve

targeted measurement properties. Hambleton (1993) gives a readable

introduction to IRT, while van der Linden and Hambleton (1997) provide a
comprehensive though technical compendium of current IRT models. IRT

further extended probability-based reasoning for addressing psychometric
principles, and it sets the stage for further - developments. We'll start with a brief

overview of the key ideas.

At first, the student model under IRT seems to be the same as it is under
CTT and g-theory, namely, a single variable measuring students' overall
proficiency in some domain of tasks. Again the statistical model does not address

the nature of that proficiency. The structure of the probability-based portion of
the argument is the same as shown in Figure 9: conditional independence
among observations given an underlying, inherently unobservable, proficiency
variable 0. But now the observations are responses to individual tasks. For Item

j, the IRT model expresses the probability of a given response xj as a function of 0

and parameters /31 that characterize Item j (such as its difficulty):

f(xj; 0,S). (4)

Under the Rasch (1960/1980) model for dichotomous (right/wrong) items,

for example, the probability of a correct response takes the following form:

Prob(Xij=1 0i,A) = f(1;003i) = T(0i- 13;), (5)

where Xii is the response of Student i to Item j, 1 if right and 0 if wrong; 0, is the
proficiency parameter of Student i; Oi is the difficulty parameter of Item j; and

W(.) is the logistic function, T(x) = exp(x) /[1+exp(x)]. The probability of an

incorrect response is then

Prob (Xij=0 0i,A) = f(0;0,,/3;) = 1- 'I'(0,- flj). (6)

Taken together, Equations 5 and 6 specify a particular form for the item response

function, Equation 4. Figure 11 depicts Rasch item response curves for two items,
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Figure 11. Two item response curves.

Item 1, an easy one, with A=-1 and Item 2, a hard one, with /32=2. It shows the
probability of a correct response to each of the items for different values of 0. For
both items, the probability of a correct response increases toward one as 0
increases. Conditional independence means that for a given value of 0, the
probability of Student i making responses xi/ and xi2 to the two items is the
product of terms like Equations 5 and 6:

Prob(Xii=xn, Xi2=Xi2 01,01,02) = Prob(Xii=xii 101,/1) Prob(Xi2=xi2 00,/32). (7)

All this is reasoning from model and given parameters, to probabilities of
not-yet-observed responses; as such, it is part of the warrant in the assessment
argument, to be backed by empirical estimates and model criticism. In
applications we need to reason in the reverse direction. Item parameters will
have been estimated and responses observed, and we need to reason from an
examinee's x's, to the value of 0. Equation 7 is then calculated as a function of 0
with xj, and x,2 fixed at their observed values; this is the likelihood function.
Figure 12 shows the likelihood function that corresponds to X,1 =0 and Xi2=1. One

can estimate 0 by the point at which the likelihood attains its maximum (around
.75 in this example), or use Bayes theorem to combine the likelihood function
with a prior distribution for 0, p(0), to obtain the posterior distribution

p( 0I xi1xi2)

The amount of information about 0 available from Item j, II(0), can be
calculated as a function of 0, f3j, and the functional form of f (see the references
mentioned above for formulas for particular IRT models). Under IRT, the
amount of information for measuring proficiency at each point along the scale is
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Maximum
likelihood

estimate .75

Figure 12. The IRT likelihood function induced by observing Xn=0 and
X0=1.

simply the sum of these item-by-item information functions. -The square root of
the reciprocal of this value is the standard error of estimation, or the standard
deviation of estimates of 0 around its true value. Figure 13 is the test
information curve that corresponds to the two items in the preceding example. It
is of particular importance in IRT that once item parameters have been
estimated ("calibrating" them), estimating individual students' O's and
calculating the accuracy of those estimates can be accomplished for any subset of
items. Easy items can be administered to fourth graders and harder ones to fifth
graders, for example, but all scores arrive on the same 0 scale. Different test
forms can be given as pretests and posttests, and differences of difficulty and
accuracy are taken into account.
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Figure 13. An IRT test information curve for the two-item example.

IRT helps assessors achieve psychometric quality in several ways.
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Concerning validity. The statistical framework indicates the patterns of
observable responses that would occur in data if it were actually the case that a
single underlying proficiency did account for all the systematic variation among

students and items. All the tools of model criticism from five centuries of
probability-based reasoning can be brought to bear to assess how well an IRT
model fits a given data set, and where it breaks down, now item by item, student

by student. The IRT model does not address the substance of the tasks, but by

highlighting tasks that are operating differently than others, or proving harder or

easier than expected, it helps test designers improve their work.

Concerning reliability. Once item parameters have been estimated, a
researcher can gauge the precision of measurement that would result from
different configurations of tasks. Precision of estimation can be gauged uniquely

for any matchup between a person and a set of items. We are no longer bound to

measures of reliability that are tied to specific populations and fixed test forms.

Concerning comparability. IRT offers strategies beyond the reach of CTT and

g-theory for assembling tests that "measure the same thing." These strategies

capitalize on the above-mentioned capability to predetermine the precision of
estimation from different sets of items at different levels of 0. Tests that provide
optimal measurement for mastery decisions can be designed, for example, as can

tests that provide targeted amounts of precision at specified levels of proficiency

(van der Linden, 1998). Large content domains can be covered in educational

surveys by giving each student only a sample of the tasks, yet using IRT to map
all performances onto the same scale. The National Assessment of Educational
Progress, for example, has made good use of the efficiencies of this item sampling

in conjunction with reporting based on IRT (Messick, Beaton, & Lord, 1983).

Tests can even be assembled on the fly in light of a student's previous responses

as assessment proceeds, a technique called adaptive testing (see Wainer et al.,

2000, for practical advice on constructing computerized adaptive tests).

Concerning fairness. An approach called "differential item functioning"
(DIF) analysis, based on IRT and related methods, has enabled both researchers
and large-scale assessors to routinely and rigorously test for a particular kind of

unfairness (e.g., Holland and Thayer, 1988; Lord, 1980). The idea is that a test

score, such as a number-correct or an IRT 0 estimate, is a summary over a large

number of item responses, and a comparison of students at the level of scores
implies that they are similarly comparable across the domain being assessed. But
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what if some of the given items are systematically harder for students from a
group defined by cultural or educational background, for reasons that are not
related to the knowledge or skill that is meant to be measured? This is DIF, and it

can be formally represented in a model containing interaction terms for items by

groups by overall proficiencyan interaction whose presence can threaten score
meaning and distort comparisons across groups. A finding of significant DIF can
imply that the observation framework needs to be modified, or if the DIF is

common to many items, that the construct-representation argument is

oversimplified.

DIF methods have been used in examining differential response patterns
for gender and ethnic groups for the last two decades and for language groups
more recently. They are now being used to investigate whether different groups
of examinees of approximately the same ability appear to be using differing

cognitive processes to respond to test items. Such uses include examining
whether differential difficulty levels are due to differential cognitive processes,
language differences (Ercikan, 1998), solution strategies and instructional
methods (Lane, Wang, Magone, 1996), and skills required by the test that are not
uniformly distributed across examinees (O'Neil and Mc Peek, 1993).

Extensions of IRT

We have just seen how IRT extends statistical modeling beyond the
constraints of classical test theory and generalizability theory. The simple
elements in the basic equation of IRT (Equation 4) can be elaborated in several

ways, each time expanding the range of assessment situations to which
probability-based reasoning can be applied in the pursuit of psychometric

principles.

Multiple-category responses. Whereas IRT was originally developed with
dichotomous (right/wrong) test items, researchers have extended the machinery
to observations that are coded in multiple categories. This is particularly useful
for performance assessment tasks that are evaluated by raters on, say, 0-5 scales.

Samejima (1969) carried out pioneering work in this regard. Thissen and
Steinberg (1986) explain the mathematics of the extension and provide a useful

taxonomy of multiple-category IRT models, and Wright and Masters (1982) offer

a readable introduction to their use.

45

47



Rater models. The preceding paragraph mentioned that multiple-category

IRT models are useful in performance assessments with judgmental rating

scales. But judges themselves are sources of uncertainty, as even knowledgeable

and well-meaning raters rarely agree perfectly. Generalizability theory, discussed

earlier, incorporates the overall impact of rater variation on scores. Adding

terms for individual raters into the IRT framework goes further, so that we can

adjust for their particular effects, offer training when it is warranted, and identify

questionable ratings with greater sensitivity. Recent work along these lines is

illustrated by Patz and Junker (1999) and Linacre (1989).

Conditional dependence. Standard IRT assumes that responses to different

items are independent once we know the item parameters and examinee's 0.

This is not strictly true when several items concern the same stimulus, as in

paragraph comprehension tests. Knowledge of the content tends to improve

performance on all items in the set, while misunderstandings tend to depress all,

in ways that don't affect items from other sets. Ignoring these dependencies leads

one to overestimate the information in the responses. The problem is more

pronounced in complex tasks when .responses to one subtask depend on results

from an earlier subtask, or when multiple ratings of different aspects of the same

performance are obtained. Wainer and his colleagues (e.g., Brad low, Wainer, &

Wang, 1999; Wainer & Keily, 1987) have studied conditional dependence in the

context of IRT. This line of work is particularly important for tasks in which

several aspects of the same complex performance must be evaluated (Yen, 1993).

Multiple attribute models. Standard IRT posits a single proficiency to

"explain" performance on all the items in a domain. One can extend the model

to situations in which multiple aspects of knowledge and skill are required in

different mixes in different items. One stream of research on multivariate IRT

follows the tradition of factor analysis, using analogous models and focusing on

estimating structures from tests more or less as they come to the analyst from the

test developers (e.g., Reckase, 1985). Another stream starts from multivariate

conceptions of knowledge and constructs tasks that contain evidence of that

knowledge in theory-driven ways (e.g., Adams, Wilson, & Wang, 1997). As such,

this extension fits in neatly with the task-construction extensions discussed in

the following paragraph. Either way, having a richer syntax to describe examinees

within the probability -lased argument supports more nuanced discussions of

knowledge and the ways it is revealed in task performances.
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Incorporating item features into the model. Embretson (1983) not only

argued for paying greater attention to construct representation in test design, she

argued for how to do it: incorporate task model variables into the statistical

model, and make explicit the ways that features of tasks impact examinees'
performance. A signal article in this regard was Fischer's (1973) linear logistic test

model, or LLTM. The LLTM is a simple extension of the Rasch model shown

earlier in Equation 5, with the further requirement that each item difficulty

parameter 0 is the sum of effects that depend on the features of that particular

item:

q/010
A.21

where hk is the contribution to item difficulty from Feature k, and qik is the extent

to which Feature k is represented in Item j. Some of the substantive

considerations that drive task design can thus be embedded in the statistical

model, and the tools of probability-based reasoning are available to examine how

well they hold up in practice (validity), how they affect measurement precision
(reliability), how they can be varied while maintaining a focus on targeted
knowledge (comparability), and whether some items prove hard or easy for

unintended reasons (fairness). Embretson (1998) walks through a detailed

example of test design, psychometric modeling, and construct validation from

this point of view. Additional contributions along these lines can be found in the

work of Tatsuoka (1990), Falmagne and Doignon (1988), Pirolli and Wilson

(1998), and DiBello, Stout, and Roussos (1995).

Progress on Other Fronts

The steady extension of probability-based tools to wider ranges of

assessment uses has not been limited to IRT. In this section, we will mention

some other important lines of development and point to work that is bringing

these many lines of progress into the same methodological framework.

Latent class models. Research on learning su nests that knowledge and skills

in some domains could be characterized as discrete states (e.g., the "production

rule" models John Anderson uses in his intelligent tutoring

systemsAnderson, Boyle, & Corbett, 1990). Latent class models characterize an

examinee as a member of one of a number of classes, rather than as a position on
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a continuous scale (Dayton, 1999; Haertel, 1989; Lazarsfeld, 1950). The classes
themselves can be considered ordered or unordered. The key idea is that students

in different classes have different probabilities of responding in designated ways
in assessment settings, depending on their values of the knowledge and skill
variables that define the classes. When this is what theory suggests and purpose

requires, using a latent class model offers the possibility of a more valid
interpretation of assessment data. The probability-based framework of latent class

modeling again enables us to rigorously test this hypothesis, and to characterize

the accuracy with which observed responses identify students with classes.
Reliability in latent class models is therefore expressed in terms of correct

classification rates.

Models for other kinds of data. All of the machinery of IRT, including the
extensions to multivariate student models, raters, and task features, can be
applied to data other than just dichotomous and multiple-category observations.

Less research and fewer applications appear in the literature, but the ideas can be

found for counts (Rasch, 1960/1980), continuous variables (Samejima, 1973), and

behavior observations such as incidence and duration (Rogosa & Ghandour,

1991).

Models that address interrelationships among variables. The developments
in measurement models we have discussed encompass wider ranges of student
models, observations, and task features, all increasing the fidelity of probability-

based models to real-world situations. This contributes to improved construct
representation. Progress on methods to study nomothetic span has taken place as

well. Important examples include structural equations models and hierarchical
models. Structural equations models (e.g., Joreskog & Sorbom, 1979) incorporate

theoretical relationships among variables and simultaneously take

measurement error into account, so that complex hypotheses can be posed and

tested coherently. Hierarchical models (e.g., Bryk & Raudenbush, 1992)

incorporate the ways that students are clustered in classrooms, classrooms within

schools, and schools within higher levels of organization, to better sort out the
within- and across-level effects that correspond to a wide variety of instructional,

organizational, and policy issues, and growth and change. Clearer specifications

and coherent statistical models of the relationships among variable help
researchers frame and critique "nomothetic net" validity arguments.
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Progress in statistical methodology. One kind of scientific breakthrough is to

recognize situations previously handled with different models, different

theories, or different methods as special cases of a single approach. The
previously mentioned models and accompanying computer programs for

structural equations and hierarchical analyses qualify. Both have significantly

advanced statistical investigations in the social sciences, validity studies among

them, and made formerly esoteric analyses more widely available.

Developments taking place today in statistical computing are beginning to
revolutionize psychometric analysis in a similar way.

Those developments comprise resampling-based estimation, full Bayesian

analysis, and modular construction of statistical models (Gelman, Carlin, Stern,

and Rubin, 1995). The idea is this. The difficulty of managing evidence leads

most substantive researchers to work within known and manageable families of

analytic models; that is, ones with known properties, available procedures, and

familiar exemplars. All of the psychometric models discussed above followed

their own paths of evolution, each over the years generating its own language,

its own computer programs, and its own community of practitioners. Modern
computing approaches, such as Markov Chain Monte Carlo estimation, provide

a general approach to construct and fit such models with more flexibility, and see

all as variations on a common theme. In the same conceptual framework and

with the same estimation approach, we can carry out probability-based reasoning

with all of the models we have discussed.

Moreover, we can mix and match components of these models, and create

new ones, to produce models that correspond to assessment designs motivated

by theory and purpose. This approach stands in contrast to the compromises in

theory and methods that result when we have to gather data to meet the
constraints of specific models and specialized computer programs. The freeware

computer program BUGS (Spiegelhalter, Thomas, & Gilks, 1995) exemplifies this

building-block approach. These developments are softening the boundaries

between researchers who study psychometric modeling and those who address

the substantive aspects of assessment. A more thoughtful integration of

substantive and statistical lines of evidentiary arguments in assessment will

further the understanding and the attainment of psychometric principles.



Conclusion

These are days of rapid change in assessment.? Advances in cognitive
psychology deepen our understanding of how students gain and use knowledge

(National Research Council, 1999). Advances in technology make it possible to

capture more complex performances in assessment settings, by including, for

example, simulation, interactivity, collaboration, and constructed response
(Bennett, 2001). Yet as forms of assessment evolve, two themes endure: the
importance of psychometric principles as guarantors of social values, and their
realization through sound evidentiary arguments.

We have seen that the quality of assessment depends on the quality of the
evidentiary argument, and how substance, statistics, and purpose must be woven
together throughout the argument. A conceptual framework, such as the
assessment design models of Figure 1, helps experts from different fields

integrate their diverse work to achieve this end (Mislevy, Steinberg, Almond,
Haertel, and Penuel, in press). Questions will persist, as to "How do we
synthesize evidence from disparate sources?" "How much evidence do we
have?" "Does it tell us what we think it does?" and "Are the inferences
appropriate for each student?" The perspectives and the methodologies that
underlie psychometric principlesvalidity, reliability, comparability, and
fairnessprovide formal tools to address these questions, in whatever specific

forms they arise.

7 Knowing What Students Know (National Research Council, 2001), a report by the Committee an
the Foundations of Assessment, surveys these developments.
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